A 2.3 A resolution structure of chymosin complexed with a reduced bond inhibitor shows that the active site beta-hairpin flap is rearranged when compared with the native crystal structure.

نویسندگان

  • M R Groves
  • V Dhanaraj
  • M Badasso
  • P Nugent
  • J E Pitts
  • D J Hoover
  • T L Blundell
چکیده

In the crystal structure of uncomplexed native chymosin, the beta-hairpin at the active site, known as 'the flap', adopts a different conformation from that of other aspartic proteinases. This conformation would prevent the mode of binding of substrates/inhibitors generally found in other aspartic proteinase complexes. We now report the X-ray analysis of chymosin complexed with a reduced bond inhibitor CP-113972 ¿(2R,3S)-isopropyl 3-[(L-prolyl-p-iodo-L-phenylalanyl-S-methyl-cysteinyl)amino-4]-cyclohexy l-2-hydroxybutanoate¿ at 2.3 A resolution in a novel crystal form of spacegroup R32. The structure has been refined by restrained least-squares methods to a final R-factor of 0.19 for a total of 11 988 independent reflections in the resolution range 10 to 2.3 A. The extended beta-strand conformation of the inhibitor allows hydrogen bonds within the active site, while its sidechains make both electrostatic and hydrophobic interactions with residues lining the specificity pockets S4-->S1. The flap closes over the active site cleft in a way that closely resembles that of other previously determined aspartic proteinase inhibitor complexes. We conclude that the usual position and conformation of the flap found in other aspartic proteinases is available to native chymosin. The conformation observed in the native crystal form may result from intermolecular interactions between symmetry-related molecules in the crystal lattice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The structure of endothiapepsin complexed with a Phe-Tyr reduced-bond inhibitor at 1.35 Å resolution.

Endothiapepsin is a typical member of the aspartic proteinase family. The catalytic mechanism of this family is attributed to two conserved catalytic aspartate residues, which coordinate the hydrolysis of a peptide bond. An oligopeptide inhibitor (IC50 = 0.62 µM) based on a reduced-bond transition-state inhibitor of mucorpepsin was co-crystallized with endothiapepsin and the crystal structure o...

متن کامل

Structure of acetylcholinesterase complexed with (-)-galanthamine at 2.3 A resolution.

(-)-Galanthamine (GAL), an alkaloid from the flower, the common snowdrop (Galanthus nivalis), shows anticholinesterase activity. This property has made GAL the target of research as to its effectiveness in the treatment of Alzheimer's disease. We have solved the X-ray crystal structure of GAL bound in the active site of Torpedo californica acetylcholinesterase (TcAChE) to 2.3 A resolution. The ...

متن کامل

Synthesis of Zinc Dimethyldithiocarbamate by Reductive Disulfide Bond Cleavage of Tetramethylthiuram Disulfide in Presence of Zn2+

The zinc(II) complex [Zn2(dmdtc)2(μ-dmdtc)2] has been synthesized directly from thiram ligand, containing a disulfide bond {dmdtc = N,N-dimethyldithiocarbamate; thiram = N,N-tetramethylthiuram disulfide}, and characterized by elemental analysis and spectroscopic methods. Surprisingly thiram, undergoes a reductive disulfide bond scission upon reaction with Zn2+ in methanolic media to give the [Z...

متن کامل

The crystal structure of phosphinothricin in the active site of glutamine synthetase illuminates the mechanism of enzymatic inhibition.

Phosphinothricin is a potent inhibitor of the enzyme glutamine synthetase (GS). The resolution of the native structure of GS from Salmonella typhimurium has been extended to 2.5 A resolution, and the improved model is used to determine the structure of phosphinothricin complexed to GS by difference Fourier methods. The structure suggests a noncovalent, dead-end mechanism of inhibition. Phosphin...

متن کامل

Crystal structure of the neutral form of fructose-1,6-bisphosphatase complexed with the product fructose 6-phosphate at 2.1-A resolution.

The crystal structure of fructose-1,6-bisphosphatase (EC 3.1.3.11) complexed with the product fructose 6-phosphate (F6P) has been refined at 2.1-A resolution to an R factor of 0.177 with root-mean-square deviations of 0.014 A and 2.9 degrees from the ideal geometries of bond lengths and bond angles, respectively. The secondary structures but not the trace of the unligated enzyme have been sligh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Protein engineering

دوره 11 10  شماره 

صفحات  -

تاریخ انتشار 1998